首页 / 病毒学与疫苗研究 / 单纯疱疹病毒(HSV/HHV-1)

选项

选项+

选项

  • 产品类别
    Proteins (4)
    Antibodies (12)
  • 靶标
    gE/Envelope glycoprotein E (1)
    US8/Envelope glycoprotein E (1)
    gD/Envelope glycoprotein D (3)
    gG/US4 (2)
    gD/US6 (7)
    gB/Envelope glycoprotein B (2)
  • 种属
    Human herpesvirus 2 (HSV-2/HHV-2) (8)
    Human herpesvirus 1 (HSV-1/HHV-1) (8)
  • 应用
    IHC (3)
    Immunogen (4)
    WB (9)
    SDS-PAGE (4)
    Bioactivity testing in progress (4)
    Neutralization (3)
    Blocking (2)
    ELISA (16)
    FCM (2)
  • 宿主
    Alpaca (1)
    Rabbit (1)
    Mouse (4)
    Human (6)
  • 克隆类型
    Monoclonal (11)
    Polyclonal (1)
  • 品牌
    AntibodySystem (16)

单纯疱疹病毒(HSV/HHV-1)


图1 单纯疱疹病毒结构示意图(Bai et al., 2024)

 

       单纯疱疹病毒(HSV)是一种疱疹病毒科(Herpesviridae)的包膜病毒,主要有两种类型:单纯疱疹病毒1(HSV-1)和单纯疱疹病毒2(HSV-2)。HSV-1主要引起口面部和生殖器感染,而HSV-2则主要与生殖器感染和严重的新生儿感染有关。全球有超过37亿人感染HSV-1,约5亿人感染HSV-2。一旦感染,病毒会在体内终生潜伏,对新生儿和免疫功能低下的个体尤为危险。
HSV有一个大型的线性双链DNA基因组,长度约为150 kb。该基因组有约280个开放阅读框(ORF),产生约200种蛋白质。病毒基因组由一个162个壳粒组成的二十面体衣壳包裹。衣壳外包围着一层富含蛋白质的基质,称为基质层(tegument),在病毒复制和免疫逃逸中起着至关重要的作用。病毒颗粒被一层脂质双层膜包裹,这层包膜包含至少20种病毒蛋白,其中13种为糖蛋白,这些糖蛋白对于病毒附着和进入宿主细胞至关重要,也是开发单纯疱疹病毒疫苗的主要靶点。
       病毒衣壳由五种衣壳蛋白组成:UL6、UL19、UL35、UL38和主要衣壳蛋白UL19。与病毒复制和免疫逃逸相关的基质层蛋白包括VP16、UL36和VP22。病毒包膜糖蛋白,包括糖蛋白B、C、D、G和E,对于病毒侵入宿主细胞和逃避宿主免疫反应至关重要。
       目前的抗病毒疗法无法治愈单纯疱疹病毒感染,也没有有效的预防感染的疫苗,这突显了继续进行预防和治疗研究的必要性。

 

gB (glycoprotein B)

       糖蛋白B(gB)是HSV的融合蛋白,属于I型膜蛋白,锚定在病毒包膜中,是所有疱疹病毒亚科中最为保守的糖蛋白之一。gB引发的膜融合受到高度调控,需要病毒糖蛋白gD、gH和gL,这些糖蛋白形成了最小的“融合机器”复合体。糖蛋白K(gK)及其他病毒成分进一步调节这一过程。gB对于病毒颗粒的附着和进入各种细胞类型至关重要。在进入过程中,gB从融合前构象转变到融合后构象,暴露出疏水肽,这些肽嵌入到对膜中以启动融合。这一过渡过程由糖蛋白H(gH)调节。

 
图2 单纯疱疹病毒gB蛋白的结构域组成和空间结构 (Cooper et al., 2018)

 

gC (glycoprotein C)

       糖蛋白C(gC)由UL44基因编码,在所有三种α-疱疹病毒(HSV-1, HSV-2和VZV)中都高度保守。gC是病毒的主要配体,在病毒入侵中发挥关键作用,通过与细胞表面的肝素硫酸蛋白聚糖结合。此外,gC还与补体成分C3b结合,抑制补体介导的免疫反应,帮助病毒逃逸免疫系统。在人类表皮角质形成细胞中,gC是CD4+ 细胞毒性T细胞的主要靶标之一。最近的研究表明,HSV-1的gC通过保护其他病毒包膜糖蛋白(如gB),免受中和作用,从而增强病毒的生存能力和感染性。


gD (glycoprotein D)

       糖蛋白gD在HSV入侵中发挥关键作用,通过与特定的细胞受体结合,触发一系列事件,激活融合过程。目前已知gD至少有三种细胞受体:疱疹病毒入侵介导因子(HVEM)、nectin-1,以及3-O-硫酸化的肝素硫酸衍生物。gD胞外结构域的C端对HSV-1的感染性尤为重要,因为它影响gD与这些受体的结合,特别是nectin-1,使得gD自身成为中和抗体的关键靶点。该相互作用对于启动涉及gB和gH/gL复合体的融合级联过程至关重要。gC与肝素硫酸蛋白聚糖(HSPG)的相互作用虽然重要,但对HSV入侵并非必需,而gD/受体的相互作用是关键的,并被视为病毒进入后续步骤的先决条件。 


图3 单纯疱疹病毒gD/Nectin-1复合物空间结构 (Zhang et al., 2011)

 

gE (Glycoprotein E)

       HSV-1和HSV-2的包膜糖蛋白E和I(gE和gI)形成复合物,该复合物作为IgG的受体,通过结合IgG的Fc区,逃避宿主免疫系统的检测。负责IgG Fc结合的区域在gE的氨基酸235-380位点和gI的氨基酸128-145位点。gE/gI复合物对IgG的亲和力很高,gE/gI复合体可以结合IgG单体。而单独的gE对IgG的亲和力则较低,只能结合聚集的IgG而不能结合IgG单体。gE/gI复合体在细胞表面的碱性pH下结合IgG,并在溶酶体的酸性pH下释放它,这与其在促进抗病毒抗体降解中的作用一致。 


图4 单纯疱疹病毒gE在不同pH下对IgG的Fc区结合能力不同 (Sprague et al., 2006)


gH-gL complex

       gH-gL复合体对病毒的感染至关重要,并且是宿主免疫系统的主要抗原。gH-gL多克隆抗体对该复合体具有中和作用,即使在病毒附着后添加这些抗体也能阻止病毒入侵。这些抗体表现出对HSV的高滴度、补体非依赖性中和活性。gH-gL免疫的小鼠展示了高滴度的病毒中和活性。这些数据表明,gH-gL可以作为亚单位疫苗的候选物。并且,αvβ6和αvβ8整合素作为HSV进入角质形成细胞和其他上皮及神经细胞的受体,它们与gH-gL具有高亲和力。


图5 单纯疱疹病毒gH-gL复合物晶体结构(Chowdary et al., 2010)

 

Reference
1.    AlMukdad, S., Harfouche, M., Wettstein, A., and Abu-Raddad, L.J. (2021). Epidemiology of herpes simplex virus type 2 in Asia: A systematic review, meta-analysis, and meta-regression. The Lancet Regional Health–Western Pacific 12.
2.    Arduino, P.G., and Porter, S.R. (2008). Herpes Simplex Virus Type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 37, 107-121.
3.    Bai, L., Xu, J., Zeng, L., Zhang, L., and Zhou, F. (2024). A review of HSV pathogenesis, vaccine development, and advanced applications. Molecular Biomedicine 5, 35.
4.    Bernstein, D.I., Bellamy, A.R., Hook, E.W., III, Levin, M.J., Wald, A., Ewell, M.G., Wolff, P.A., Deal, C.D., Heineman, T.C., Dubin, G., et al. (2012). Epidemiology, Clinical Presentation, and Antibody Response to Primary Infection With Herpes Simplex Virus Type 1 and Type 2 in Young Women. Clinical Infectious Diseases 56, 344-351.
5.    Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., and Heldwein, E.E. (2010). Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17, 882-888.
6.    Cooper, R.S., Georgieva, E.R., Borbat, P.P., Freed, J.H., and Heldwein, E.E. (2018). Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol 25, 416-424.
7.    Dai, X., and Zhou, Z.H. (2018). Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360, eaao7298.
8.    Di Giovine, P., Settembre, E.C., Bhargava, A.K., Luftig, M.A., Lou, H., Cohen, G.H., Eisenberg, R.J., Krummenacher, C., and Carfi, A. (2011). Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS pathogens 7, e1002277.
9.    Hoog, S.S., Smith, W.W., Qiu, X., Janson, C.A., Hellmig, B., McQueney, M.S., O'Donnell, K., O'Shannessy, D., DiLella, A.G., Debouck, C., et al. (1997). Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry 36, 14023-14029.
10.    Jama, M., Owen, E.M., Nahal, B., Obasi, A., and Clarke, E. (2024). Twenty years of herpes simplex virus type 2 (HSV-2) research in low-income and middle-income countries: systematic evaluation of progress made in addressing WHO prioritiesfor research in HSV-2 epidemiology and diagnostics. BMJ Global Health 9, e012717.
11.    Jambunathan, N., Clark, C.M., Musarrat, F., Chouljenko, V.N., Rudd, J., and Kousoulas, K.G. (2021). Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 13, 1849.
12.    James, C., Harfouche, M., Welton, N.J., Turner, K.M., Abu-Raddad, L.J., Gottlieb, S.L., and Looker, K.J. (2020). Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bulletin of the World Health Organization 98, 315.
13.    Liu, Y.T., Jih, J., Dai, X., Bi, G.Q., and Zhou, Z.H. (2019). Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570, 257-261.
14.    Looker, K.J., and Garnett, G.P. (2005). A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect 81, 103-107.
15.    Peng, T., Ponce-de-Leon, M., Jiang, H., Dubin, G., Lubinski, J.M., Eisenberg, R.J., and Cohen, G.H. (1998). The gH-gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. J Virol 72, 65-72.
16.    Sari, T.K., Gianopulos, K.A., and Nicola, A.V. (2020). Glycoprotein C of Herpes Simplex Virus 1 Shields Glycoprotein B from Antibody Neutralization. Journal of Virology 94, 10.1128/jvi.01852-01819.
17.    Sprague, E.R., Wang, C., Baker, D., and Bjorkman, P.J. (2006). Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 4, e148.
18.    Stampfer, S.D., Lou, H., Cohen, G.H., Eisenberg, R.J., and Heldwein, E.E. (2010). Structural Basis of Local, pH-Dependent Conformational Changes in Glycoprotein B from Herpes Simplex Virus Type 1. Journal of Virology 84, 12924-12933.
19.    Zhang, N., Yan, J., Lu, G., Guo, Z., Fan, Z., Wang, J., Shi, Y., Qi, J., and Gao, G.F. (2011). Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2, 577.
20.    Zhu, S., and Viejo-Borbolla, A. (2021). Pathogenesis and virulence of herpes simplex virus. Virulence 12, 2670-2702.